Humanin Research & Studies

Browse 18 scientific publications and peer-reviewed studies related to Humanin.

18
Total Citations
8
Years of Research
2023
Most Recent
2010
Earliest

2023(5 publications)

Evaluation of Serum Humanin and MOTS-c Peptide Levels in Patients with COVID-19 and Healthy Subjects.

Saracaloglu A, et al.

Current protein & peptide sciencePMID: 36799414
View Abstract

Coronavirus Disease 2019 (COVID-19) is a life-threatening and persistent pandemic with high rates of mortality and morbidity. Although a dysfunction in the mitochondria occurs in COVID-19 pathogenesis, the contribution of mitochondrial-derived peptides to its pathophysiology has not yet been completely elucidated. The goals of this research were to assess the circulating humanin and mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) levels in COVID-19 patients and explore the effects of antiviral drug therapy on these peptide levels.

Neuroprotective Action of Humanin and Humanin Analogues: Research Findings and Perspectives.

Karachaliou CE, Livaniou E

View Abstract

Humanin is a 24-mer peptide first reported in the early 2000s as a new neuroprotective/cytoprotective factor rescuing neuronal cells from death induced by various Alzheimer's disease-associated insults. Nowadays it is known that humanin belongs to the novel class of the so-called mitochondrial-derived peptides (which are encoded by mitochondrial DNA) and has been shown to exert beneficial cytoprotective effects in a series of in vitro and/or in vivo experimental models of human diseases, including not only neurodegenerative disorders but other human diseases as well (e.g., age-related macular degeneration, cardiovascular diseases, or diabetes mellitus). This review article is focused on the presentation of recent in vitro and in vivo research results associated with the neuroprotective action of humanin as well as of various, mainly synthetic, analogues of the peptide; moreover, the main mode(s)/mechanism(s) through which humanin and humanin analogues may exert in vitro and in vivo regarding neuroprotection have been reported. The prospects of humanin and humanin analogues to be further investigated in the frame of future research endeavors against neurodegenerative/neural diseases have also been briefly discussed.

Mitochondrial stress and mitokines in aging.

Burtscher J, et al.

Aging cellPMID: 36642986
View Abstract

Mitokines are signaling molecules that enable communication of local mitochondrial stress to other mitochondria in distant cells and tissues. Among those molecules are FGF21, GDF15 (both expressed in the nucleus) and several mitochondrial-derived peptides, including humanin. Their responsiveness to mitochondrial stress induces mitokine-signaling in response for example to exercise, following mitochondrial challenges in skeletal muscle. Such signaling is emerging as an important mediator of exercise-derived and dietary strategy-related molecular and systemic health benefits, including healthy aging. A compensatory increase in mitokine synthesis and secretion could preserve mitochondrial function and overall cellular vitality. Conversely, resistance against mitokine actions may also develop. Alterations of mitokine-levels, and therefore of mitokine-related inter-tissue cross talk, are associated with general aging processes and could influence the development of age-related chronic metabolic, cardiovascular and neurological diseases; whether these changes contribute to aging or represent "rescue factors" remains to be conclusively shown. The aim of the present review is to summarize the expanding knowledge on mitokines, the potential to modulate them by lifestyle and their involvement in aging and age-related diseases. We highlight the importance of well-balanced mitokine-levels, the preventive and therapeutic properties of maintaining mitokine homeostasis and sensitivity of mitokine signaling but also the risks arising from the dysregulation of mitokines. While reduced mitokine levels may impair inter-organ crosstalk, also excessive mitokine concentrations can have deleterious consequences and are associated with conditions such as cancer and heart failure. Preservation of healthy mitokine signaling levels can be achieved by regular exercise and is associated with an increased lifespan.

Neuron-derived extracellular vesicles in blood reveal effects of exercise in Alzheimer's disease.

Delgado-Peraza F, et al.

Alzheimer's research & therapyPMID: 37730689
View Abstract

Neuron-derived extracellular vesicles (NDEVs) in blood may be used to derive biomarkers for the effects of exercise in Alzheimer's disease (AD). For this purpose, we studied changes in neuroprotective proteins proBDNF, BDNF, and humanin in plasma NDEVs from patients with mild to moderate AD participating in the randomized controlled trial (RCT) of exercise ADEX.

Humanin and Its Pathophysiological Roles in Aging: A Systematic Review.

Coradduzza D, et al.

View Abstract

Senescence is a cellular aging process in all multicellular organisms. It is characterized by a decline in cellular functions and proliferation, resulting in increased cellular damage and death. These conditions play an essential role in aging and significantly contribute to the development of age-related complications. Humanin is a mitochondrial-derived peptide (MDP), encoded by mitochondrial DNA, playing a cytoprotective role to preserve mitochondrial function and cell viability under stressful and senescence conditions. For these reasons, humanin can be exploited in strategies aiming to counteract several processes involved in aging, including cardiovascular disease, neurodegeneration, and cancer. Relevance of these conditions to aging and disease: Senescence appears to be involved in the decay in organ and tissue function, it has also been related to the development of age-related diseases, such as cardiovascular conditions, cancer, and diabetes. In particular, senescent cells produce inflammatory cytokines and other pro-inflammatory molecules that can participate to the development of such diseases. Humanin, on the other hand, seems to contrast the development of such conditions, and it is also known to play a role in these diseases by promoting the death of damaged or malfunctioning cells and contributing to the inflammation often associated with them. Both senescence and humanin-related mechanisms are complex processes that have not been fully clarified yet. Further research is needed to thoroughly understand the role of such processes in aging and disease and identify potential interventions to target them in order to prevent or treat age-related conditions.

2022(5 publications)

Roles of humanin and derivatives on the pathology of neurodegenerative diseases and cognition.

Thiankhaw K, et al.

Biochimica et biophysica acta. General subjectsPMID: 35104624
View Abstract

Alzheimer's disease (AD), Parkinson's disease (PD), and age-related macular degeneration (AMD) are common among neurodegenerative diseases, but investigations into novel therapeutic approaches are currently limited. Humanin (HN) is a mitochondrial-derived peptide found in brain tissues of patients with familial AD and has been increasingly investigated in AD and other neurodegenerative diseases.

An evidence of Humanin-like peptide and Humanin mediated cryosurvival of spermatozoa in buffalo bulls.

Katiyar R, et al.

TheriogenologyPMID: 36183493
View Abstract

Buffalo spermatozoa are vulnerable to cryo-injuries due to inherent deficiency of endogenous antioxidants, high polyunsaturated fatty acids (PUFA) content in plasma membrane and low cholesterol/phospholipid (C/P) ratio. Humanin is a potent cytoprotective agent that protects the cells against oxidative stress and apoptosis. The present study was designed to establish the presence of Humanin in buffalo and effect of Humanin supplementation on freezability of buffalo spermatozoa. Indirect immunofluorescence test revealed presence of Humanin in ejaculated and epididymal spermatozoa, and, elongated spermatids and interstitial space in the testicular tissue section. Humanin levels in seminal plasma were significantly and positively correlated with sperm concentration and individual progressive motility (IPM) in good (n = 22; IPM >70%) and poor (n = 10; IPM <50%) quality ejaculates. For supplementation studies, a total of 24 ejaculates (IPM ≥70%) were collected and each ejaculate was then divided into four aliquots. First aliquot was diluted with egg yolk-tris-glycerol (EYTG) extender without Humanin and served as control group (Group I). Rest three aliquots were diluted with extender containing 2 (Group II), 5 (Group III) and 10 μM Humanin (Group IV), respectively. Semen was cryopreserved using standard protocol and evaluated at pre-freeze for lipid peroxidation (LPO) and post-thaw stages for spermatozoa kinematics, LPO, mitochondrial membrane potential (MMP), capacitation, apoptotic status and DNA integrity. The treatment group that showed best results (5 μM) was compared with control group for in vitro fertility assessment by homologous zona binding assay. The LPO levels were lower (p < 0.05) in 5 and 10 μM Humanin supplemented group. The MMP and DNA integrity were higher (p < 0.05) in 5 μM group than other groups. F-pattern was higher (p < 0.05) and B-pattern was lower (p < 0.05) in 5 and 10 μM Humanin supplemented groups. Lower apoptotic and higher viable spermatozoa (p < 0.05) were observed in 5 μM Humanin group. The mean number of spermatozoa bound to zona pellucida was higher (p < 0.05) in 5 μM Humanin treated group than the control group. The study established the presence of Humanin in buffalo spermatozoa and seminal plasma for very first time and concluded that Humanin supplementation at 5 μM concentration improves the freezability and in vitro fertility of buffalo spermatozoa.

Humanin and Alzheimer's disease: The beginning of a new field.

Niikura T

Biochimica et biophysica acta. General subjectsPMID: 34626746
View Abstract

Humanin (HN) is an endogenous peptide factor and known as a member of mitochondrial-derived peptides. We first found the gene encoding this novel 24-residue peptide in a brain of an Alzheimer's disease (AD) patient as an antagonizing factor against neuronal cell death induced by AD-associated insults.

Mitochondria-derived peptides in aging and healthspan.

Miller B, et al.

The Journal of clinical investigationPMID: 35499074
View Abstract

The mechanisms that explain mitochondrial dysfunction in aging and healthspan continue to be studied, but one element has been unexplored: microproteins. Small open reading frames in circular mitochondria DNA can encode multiple microproteins, called mitochondria-derived peptides (MDPs). Currently, eight MDPs have been published: humanin, MOTS-c, and SHLPs 1-6. This Review describes recent advances in microprotein discovery with a focus on MDPs. It discusses what is currently known about MDPs in aging and how this new understanding could add to the way we understand age-related diseases including type 2 diabetes, cancer, and neurodegenerative diseases at the genomic, proteomic, and drug-development levels.

The role of humanin in the regulation of reproduction.

Lei H, Rao M

Biochimica et biophysica acta. General subjectsPMID: 34626748
View Abstract

Humanin, a mitochondria-derived peptide, has been found to exert variously protective function in many tissues, especially in the nervous tissues. However, relatively limited studies have focused on the role of humanin in the regulation of reproduction. Current observations indicate that humanin plays an important role in regulating the response of the cell to oxidative stress and apoptosis in ovaries and testes via the modulation of several signaling pathways, especially when the body is in an abnormal state. Even so, the detailed mechanism of humanin function needs to be explored urgently. In this passage, we demonstrate how humanin exerts its protective role in female and male reproduction and raise several questions that need further investigations. Given humanin's new frontier for the design of novel therapeutic approaches for male infertility, male contraception, female infertility, and glucose metabolism in polycystic ovary syndrome, it is worthy of further study on its protective effects and clinical applications in reproductive function.

2021(1 publications)

Mitochondrial-derived peptides and exercise.

Woodhead JST, Merry TL

Biochimica et biophysica acta. General subjectsPMID: 34520826
View Abstract

Acute exercise, and in particular aerobic exercise, increases skeletal muscle energy demand causing mitochondrial stress, and mitochondrial-related adaptations which are a hallmark of exercise training. Given that mitochondria are central players in the exercise response, it is imperative that they have networks that can communicate their status both intra- and inter-cellularly. Peptides encoded by short open-reading frames within mitochondrial DNA, mitochondrial-derived peptides (MDPs), have been suggested to form a newly recognised branch of this retrograde signalling cascade that contribute to coordinating the adaptive response to regular exercise. Here we summarise the recent evidence that acute high intensity exercise in humans can increase concentrations of the MDPs humanin and MOTS-c in skeletal muscle and plasma, and speculate on the mechanisms controlling MDP responses to exercise stress. Evidence that exercise training results in chronic changes in MDP expression within tissues and the circulation is conflicting and may depend on the mode, duration, intensity of training plan and participant characteristics. Further research is required to define the effect of these variables on MDPs and to determine whether MDPs other than MOTS-c have exercise mimetic properties. MOTS-c treatment of young and aged mice improves exercise capacity/performance and leads to adaptions that are similar to that of being physically active (weight loss, increased antioxidant capacity and improved insulin sensitivity), however, studies utilising a MOTS-c inactivating genetic variant or combination of exercise + MOTS-c treatment in mice suggest that there are distinct and overlapping pathways through which exercise and MOTS-c evoke metabolic benefits. Overall, MOTS-c, and potentially other MDPs, may be exercise-sensitive myokines and further work is required to define inter- and intra-tissue targets in an exercise context.

2020(2 publications)

2019(1 publications)

Mitochondrial-derived peptide humanin as therapeutic target in cancer and degenerative diseases.

Zuccato CF, et al.

Expert opinion on therapeutic targetsPMID: 30582721
View Abstract

Mitochondrial-derived peptides (MDPs) are encoded within the mitochondrial genome. They signal within the cell or are released to act as autocrine/paracrine/endocrine cytoprotective factors playing a key role in the cellular stress response. The first reported and better characterized MDP is humanin (HN), which exerts robust protective effects against a myriad of cytotoxic stimuli in many cell types. These effects have led to the evaluation of HN and its analogs as therapeutic targets for several chronic diseases. Areas covered: We describe the latest findings on the mechanism of action of HN and discuss the role of HN as therapeutic target for neurodegenerative and cardiovascular diseases, diabetes, male infertility, and cancer. Since HN can be detected in circulation, we also depict its value as a biomarker for these diseases. Expert opinion: HN analogs and peptide mimetics have been developed over the last decade and show promising results in preclinical models of degenerative diseases. Local administration of gene therapy vectors that overexpress or silence endogenous HN could also hold therapeutic potential. Controversy on the role of HN in cancer progression and chemoresistance should be addressed before the translation of these therapeutic approaches.

2018(1 publications)

Mitochondrial-Derived Peptides Exacerbate Senescence.

Mendelsohn AR, Larrick JW

Rejuvenation researchPMID: 30058454
View Abstract

Mitochondrial-derived peptides (MDPs), encoded by mitochondrial DNA, play a cytoprotective role by helping preserve mitochondrial function and cell viability under stressful conditions. Humanin and its homologs and MOTS-c are two of several MDPs hypothesized to have antiaging activity based on correlative studies. For example, humanin plasma levels are inversely correlated with growth hormone and insulin-like growth factor 1 expression, which may promote accelerated aging. Humanin has been shown to protect cells from beta amyloid toxicity and preserve endothelial cell function in a mouse model of atherosclerosis. Furthermore, both humanin and MOTS-c improve insulin sensitivity in mouse models of type 2 diabetes. Recently it was reported that a potent analogue of humanin blocks cardiac fibrosis in aging mice. Although it has been hypothesized that MDPs might have senolytic activity, in a recent report humanin and MOTS-c both exacerbate the senescence-associated-secretory-phenotype (SASP) in senescent cells by stimulating the secretion of IL-6, IL-1β, IL-8, IL-10 and tumor necrosis factor α. It appears that the cytoprotective activity of the MDPs may be permissive for increased expression of a set of proinflammatory cytokines. Given the potential benefits of MDPs in many of the same diseases associated with the presence of senescent cells, a combination of senolytic and MDP-based treatments may be additive or synergistic. The MDPs would protect normal cells, whereas senescent cells would be eliminated by the senolytic therapy. It is even possible that MDPs by increasing the SASP phenotype would make the senescent cells more apt to be cleared by the immune system or more sensitive to senolytics. In contrast, if the MDPs actually cytoprotect the senescent cells, then the treatment can be performed serially with the senolytic used first.

2016(2 publications)

Humanin: Functional Interfaces with IGF-I.

Xiao J, et al.

Growth hormone & IGF research : official journal of the Growth Hormone Research Society and the International IGF Research SocietyPMID: 27082450
View Abstract

Humanin is the first newly discovered peptide encoded in the mitochondrial genome in over three decades. It is the first member of a novel class of mitochondrial derived peptides. This small, 24 amino acid peptide was initially discovered to have neuroprotective effects and subsequent experiments have shown that it is beneficial in a diverse number of disease models including stroke, cardiovascular disease, and cancer. Over a decade ago, our lab found that humanin bound IGFBP-3 and more recent studies have found it to decrease circulating IGF-I levels. In turn, IGF-I also seems to regulate humanin levels and in this review, we cover the known interaction between humanin and IGF-I. Although the exact mechanism for how humanin and IGF-I regulate each other still needs to be elucidated, it is clear that humanin is a new player in IGF-I signaling.

2010(1 publications)

Humanin and the receptors for humanin.

Matsuoka M, Hashimoto Y

Molecular neurobiologyPMID: 19997871
View Abstract

Alzheimer's disease (AD) is a prevalent dementia-causing neurodegenerative disease. Neuronal death is closely linked to the progression of AD-associated dementia. Accumulating evidence has established that a 24-amino-acid bioactive peptide, Humanin, protects neurons from AD-related neuronal death. A series of studies using various murine AD models including familial AD gene-expressing transgenic mice have shown that Humanin is effective against AD-related neuronal dysfunction in vivo. Most recently, it has been shown that Humanin inhibits neuronal cell death and dysfunction by binding to a novel IL-6-receptor-related receptor(s) on the cell surface involving CNTFRalpha, WSX-1, and gp130. These findings suggest that endogenous Humanin [or a Humanin-like substance(s)] may suppress the onset of AD-related dementia by inhibiting both AD-related neuronal cell death and dysfunction.