GHRP-6 Research & Studies

Browse 20 scientific publications and peer-reviewed studies related to GHRP-6.

20
Total Citations
16
Years of Research
2025
Most Recent
1995
Earliest

2025(1 publications)

Growth hormone-releasing peptide 6 (GHRP-6) hydrogel for acute kidney injury therapy via metabolic regulation.

Zhao X, et al.

Journal of nanobiotechnologyPMID: 41327290
View Abstract

Renal tubular epithelial cells (TECs), which are highly susceptible to injury during acute kidney injury (AKI), have notable regenerative effects on renal recovery after AKI. AKI-driven metabolic reprogramming of TECs plays a critical role in determining whether kidneys recover functionally or develop fibrosis. Targeting the metabolism of TECs offers valuable insights into AKI treatment. Growth hormone-releasing hormone (GHRH) and its analog GHRH peptide (GHRP) play beneficial roles in the field of regenerative medicine. Here, we designed a self-assembling GHRP-6 peptide hydrogel, and we hypothesized that this hydrogel could reprogram the metabolism of TECs, further enhancing recovery from AKI. Metabolomic sequencing analysis revealed that spermidine, L-glutamine, and acetyl-CoA, which are involved in amino acid and fatty acid metabolism, were highly enriched in a mouse model of AKI treated with the GHRP-6 hydrogel. Further study revealed that GHRP-6 hydrogel treatment enhanced the survival of TECs in the ischemic microenvironment by activating the mTOR-P70 pathway. In conclusion, GHRP-6 hydrogel treatment has beneficial therapeutic effects on AKI through the targeting of metabolic reprogramming, which offers a novel therapeutic strategy to protect TECs in AKI treatment.

2023(1 publications)

Inhibition of ghrelin activity by the receptor antagonist [D-Lys3]-GHRP-6 enhances hepatic fatty acid oxidation and gluconeogenesis in a growing pig model.

Zhang H, et al.

View Abstract

Despite its central role in regulating energy intake and metabolism, ghrelin is little understood when it comes to its effects on hepatic lipid and glucose metabolism. Growing pigs were intravenously injected with ghrelin receptor antagonist [D-Lys3]-GHRP-6 (DLys; 6 mg/kg body weight) for seven days to determine whether ghrelin plays a role in glucose and lipid metabolism. DLys treatment significantly reduced body weight gain and adipose histopathology found that DLys treatment dramatically reduced adipocyte size. DLys treatment significantly increased serum NEFA and insulin levels, hepatic glucose level and HOMA-IR, and significantly decreased serum TBA level of growing pigs after fasting. Moreover, DLys treatment changed the dynamics of serum metabolic parameters, including glucose, NEFA, TBA, insulin, GH, leptin, and cortisol. Liver transcriptome showed that DLys treatment affected the metabolism-related pathways. Compared with the control group, adipose tissue lipolysis (the adipose triglyceride lipase level was significantly increased), hepatic gluconeogenesis (the G6PC protein level was significantly increased) and fatty acid oxidation (the CPT1A protein level was significantly increased) were promoted in the DLys group. DLys treatment expanded degrees of oxidative phosphorylation in the liver, coming about in a higher NAD+ /NADH proportion and enactment of the SIRT1 signaling pathway. Additionally, the liver protein levels of the DLys group were significantly higher than those of the control group for GHSR, PPAR alpha, and PGC-1. To summarize, inhibition of ghrelin activity can significantly affect metabolism and alter energy levels by enhancing fat mobilization, hepatic fatty acid oxidation and gluconeogenesis without affecting fatty acid uptake and synthesis in the liver.

2021(2 publications)

Growth hormone secretagogue peptide-6 enhances oreochromicins transcription and antimicrobial activity in tilapia (Oreochromis sp.).

Hernández L, et al.

Fish & shellfish immunologyPMID: 34592474
View Abstract

Growth Hormone-Releasing Peptide 6 (GHRP-6) (His-(D-Trp)-Ala-Trp-(D-Phe)-Lys-NH2) is an agonist of the growth hormone secretagogue receptor. GHRP-6 mimics the effect of ghrelin. The present study focuses on the immunomodulatory effects of GHRP-6 in tilapia with and without the presence of Pseudomonas aeruginosa infection. GHRP-6 up-regulated the transcription levels of three piscidin-like antimicrobial peptides (Oreochromicins I, II, and III) and granzyme in a tissue-dependent manner. Antimicrobial activity stimulation in serum (lysozyme and anti-protease activity) was also confirmed. Besides, GHRP-6 enhanced the in vitro antimicrobial activity against P. aeruginosa in tilapia gills mucus and serum samples and decreased the bacterial load in vivo after infection with this Gram-negative bacterium. Our results evidenced, for the first time, a direct link between a growth hormone secretagogue ghrelin mimetic in fish and the enhancement of antimicrobial peptides transcription, which suggests that this secretagogue is capable to lead the activation of microbicidal activity in tilapia. Thus, these results open new possibilities for GHRP-6 application in aquaculture to stimulate the teleost immune system as an alternative treatment against opportunistic bacteria.

2020(2 publications)

Atheroprotective and atheroregressive potential of azapeptide derivatives of GHRP-6 as selective CD36 ligands in apolipoprotein E-deficient mice.

Frégeau G, et al.

AtherosclerosisPMID: 32721647
View Abstract

Azapeptides MPE-001 and MPE-003 diminished aortic lesion progression and reduced, below pre-existing levels, lesions in the aortic sinus of atherosclerotic mice. A relative increase of M2-like macrophages was observed in lesions, associated with reduced systemic inflammation. Development of CD36-selective azapeptide ligands merits consideration for treating atherosclerotic disease.

D-Lys-3-GHRP-6 impairs memory consolidation and downregulates the hippocampal serotonin HT1A, HT7 receptors and glutamate GluA1 subunit of AMPA receptors.

Beheshti S, et al.

Physiology & behaviorPMID: 32454141
View Abstract

Antagonism of the functional ghrelin receptors impairs memory formation, but the underlying mechanisms are not well-known. We aimed to evaluate the effect of intracerebral injection of a ghrelin receptor antagonist (D-Lys-3-GHRP-6) on memory consolidation in the inhibitory avoidance task and on the gene expression levels of serotonin HT1A and HT7 receptors, glutamate GluN1 subunit of the NMDA and GluA1 subunit of the AMPA receptors and calcium/calmodulin kinase II-α in the hippocampus of rats. Thirty adult male rats were implanted with cannulas in their lateral ventricles. Three groups of animals (n=5) received D-Lys-3-GHRP-6 (0.5 and 5nM) or saline immediately post-training. Twenty-four hours later, memory retrieval was assessed. Three additional groups of animals (n=5) received D-Lys-3-GHRP-6 (0.5 and 5nM) or saline, but animals in these groups were decapitated, and their hippocampus was removed, 24 hours thereafter. The target gene expression levels were measured using a quantitative real-time PCR method. D-Lys-3-GHRP-6 impaired memory consolidation. Meanwhile, it led to a significant downregulation of the mRNA expression levels of the hippocampal serotonin HT1A and HT7 receptors and glutamate GluA1 subunit of the AMPA receptors, but could not affect that of GluN1 subunit of the NMDA receptors and CaMKII-α. It seems that part of the impairing effect of D-Lys-3-GHRP-6 on inhibitory avoidance memory consolidation might be due to a decrease in the expression of serotonin HT1A and HT7 receptors and glutamate AMPA receptors in the hippocampus of rats.

2016(1 publications)

Impact of [d-Lys(3)]-GHRP-6 and feeding status on hypothalamic ghrelin-induced stress activation.

Brockway ET, et al.

View Abstract

Ghrelin administration directly into hypothalamic nuclei, including the arcuate nucleus (ArcN) and the paraventricular nucleus (PVN), alters the expression of stress-related behaviors. In the present study we investigated the effect of feeding status on the ability of ghrelin to induce stress and anxiogenesis. Adult male Sprague Dawley rats were implanted with guide cannula targeting either the ArcN or PVN. In the first experiment we confirmed that ArcN and PVN ghrelin treatment produced anxiety-like behavior as measured using the elevated plus maze (EPM) paradigm. Ghrelin was administered during the early dark cycle. Immediately after microinjections rats were placed in the EPM for 5min. Both ArcN and PVN treatment reduced open arm exploration. The effect was attenuated by pretreatment with the ghrelin 1a receptor antagonist [d-Lys(3)]-GHRP-6. In a separate group of animals ghrelin was injected into either nucleus and rats were returned to their home cages for 60min with free access to food. An additional group of rats was returned to home cages with no food access. After 60min with or without food access all rats were tested in the EPM. Results indicated that food consumption just prior to EPM testing reversed the avoidance of the open arms of the EPM. In contrast, rats injected with ghrelin, placed in their home cage for 60min without food, and subsequently tested in the EPM, exhibited an increased avoidance of the open arms, consistent with stress activation. Overall, our findings demonstrate that ghrelin 1a receptor blockade and feeding status appear to impact the ability of ArcN and PVN ghrelin to elicit stress and anxiety-like behaviors.

2015(1 publications)

2014(2 publications)

The effects of ghrelin antagonists [D-Lys(3) ]-GHRP-6 or JMV2959 on ethanol, water, and food intake in C57BL/6J mice.

Gomez JL, Ryabinin AE

Alcoholism, clinical and experimental researchPMID: 25257292
View Abstract

Alcohol use and abuse patterns have created a need for novel treatment models. Current research has turned its focus on reward pathways associated with intrinsic necessities, such as feeding. Theories suggest that drugs of abuse seize control of natural reward pathways and dysregulate normal function, leading to chronic addiction. One such pathway involving the hunger stimulating peptide, ghrelin, is the focus of our study.

N-aminoimidazolidin-2-one peptidomimetics.

Doan ND, Hopewell R, Lubell WD

Organic lettersPMID: 24697286
View Abstract

The synthesis of N-aminoimidazolidin-2-one (Aid) peptidomimetics has been achieved by alkylation of the urea nitrogen of a semicarbazone residue using ethylene bromide. The Aid scaffold combines electronic and structural constraints to rigidify the peptide backbone in the equivalent of an aza variant of a Freidinger-Veber lactam. The syntheses and isolation of 25 Aid peptides, including eight GHRP-6 analogues, are reported to demonstrate the utility of this method for controlling conformation.

2013(1 publications)

Pharmacokinetic study of Growth Hormone-Releasing Peptide 6 (GHRP-6) in nine male healthy volunteers.

Cabrales A, et al.

European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical SciencesPMID: 23099431
View Abstract

GHRP-6 is a growth hormone secretagogue that also enhances tissue viability in different organs. In the present work, we studied the pharmacokinetics of this short therapeutic hexapeptide (His-(D-Trp)-Ala-Trp-(D-Phe)-Lys-NH(2,) MW=872.44 Da) in nine male healthy volunteers after a single intravenous bolus administration of 100, 200 and 400 μg/kg of body weight. GHRP-6 was quantified in human plasma by a specific LC-MS method, previously developed and validated following FDA guidelines, using (13)C(3)Ala-GHRP-6 as internal standard (Gil et al., 2012, J. Pharm. Biomed. Anal. 60, 19-25). The Lower Limit of Quantification (5 ng/mL) was reached in all subjects at 12h post-administration, which was sufficient for modeling a pharmacokinetic profile including over 85% of the Area under the Curve (AUC). Disposition of GHRP-6 best fitted a bi-exponential function with R(2) higher than 0.99, according to a mathematic modeling and confirmed by an Akaike index (AIC) lower than that of the corresponding one-compartment model for all subjects. Averaging all three dose levels, the distribution and elimination half-life of GHRP-6 were 7.6 ± 1.9 min and 2.5 ± 1.1h, respectively. These values are coherent with existing data for other drugs whose disposition also fits this model. Dose dependence analysis revealed a noticeable trend for AUC to increase proportionally with administered dose. Atypical GHRP-6 concentration spikes were observed during the elimination phase in four out of the nine subjects studied.

2010(1 publications)

GHRP-6 induces CREB phosphorylation and growth hormone secretion via a protein kinase Csigma-dependent pathway in GH3 cells.

Tian C, et al.

Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen banPMID: 20407870
View Abstract

This study examined the effect of GHRP-6, a known GHSs receptor agonist, on the phosphorylation of cAMP-responsive element-binding protein (CREB) and the underly mechanism. GH3 cells were cultured and subjected to different treatments as follows: GHRP-6, GHRP-6 plus GHRH, phorbol ester (PMA), an activator of PKC, alone or in combination with GHRP-6, Gö6983, a general inhibitor of PKCs, in the presence or absence of GHRP-6, rottlerin, an inhibitor of PKCs, alone or plus GHRP-6. The cells were transiently transfected with PKCsigma-specific siRNA and then treated with GHRP-6. GH level was measured by enzyme-linked immunosorbent assay (ELISA). The expression of phosphor-CREB, PKCsigma, PKCtheta and phosphor-PKCsigma was determined by Western blotting. The results showed that GHRP-6 stimulated GH secretion in both time- and dose-dependent manners and enhanced the effect of GHRH on GH secretion. GHRP-6 was also found to induce CREB phosphorylation. Moreover, GH secretion was enhanced by the PKC activator PMA and reduced by the PKC inhibitors (Gö6983, rottlerin) and knockdown of PKCsigma. PKCsigma could be activated by GHRP-6. It is concluded that PKC, especially PKCsigma, mediates CREB phosphorylation and GHRP-6-induced GH secretion.

2006(1 publications)

Use of growth-hormone-releasing peptide-6 (GHRP-6) for the prevention of multiple organ failure.

Cibrián D, et al.

Clinical science (London, England : 1979)PMID: 16417467
View Abstract

Novel therapies for the treatment of MOF (multiple organ failure) are required. In the present study, we examined the effect of synthetic GHRP-6 (growth hormone-releasing peptide-6) on cell migration and proliferation using rat intestinal epithelial (IEC-6) and human colonic cancer (HT29) cells as in vitro models of injury. In addition, we examined its efficacy when given alone and in combination with the potent protective factor EGF (epidermal growth factor) in an in vivo model of MOF (using two hepatic vessel ischaemia/reperfusion protocols; 45 min of ischaemia and 45 min of reperfusion or 90 min of ischaemia and 120 min of reperfusion). In vitro studies showed that GHRP-6 directly influenced gut epithelial function as its addition caused a 3-fold increase in the rate of cell migration of IEC-6 and HT29 cells (P<0.01), but did not increase proliferation ([3H]thymidine incorporation). In vivo studies showed that, compared with baseline values, ischaemia/reperfusion caused marked hepatic and intestinal damage (histological scoring), neutrophilic infiltration (myeloperoxidase assay; 5-fold increase) and lipid peroxidation (malondialdehyde assay; 4-fold increase). Pre-treatment with GHRP-6 (120 microg/kg of body weight, intraperitoneally) alone truncated these effects by 50-85% (all P<0.05) and an additional benefit was seen when GHRP-6 was used in combination with EGF (1 mg/kg of body weight, intraperitoneally). Lung and renal injuries were also reduced by these pre-treatments. In conclusion, administration of GHRP-6, given alone or in combination with EGF to enhance its effects, may provide a novel simple approach for the prevention and treatment of MOF and other injuries of the gastrointestinal tract. In view of these findings, further studies appear justified.

2003(2 publications)

GHRP-6 is able to stimulate cortisol and ACTH release in patients with Cushing's disease: comparison with DDAVP.

Oliveira JH, et al.

Journal of endocrinological investigationPMID: 12809173
View Abstract

It has been shown that hexarelin stimulates ACTH and cortisol secretion in patients with Cushing's disease. The ACTH release induced by this peptide is 7-fold greater than that obtained by hCRH. The mechanism of action of hexarelin on the hypothalamic-pituitary-adrenal axis has not been fully elucidated. Although controversial, there is evidence that it might be mediated by arginine vasopressin (AVP). The aim of this study was to evaluate the ACTH and cortisol releasing effects of GHRP-6 in patients with Cushing's disease and to compare them with those obtained with DDAVP administration. We studied 10 patients with Cushing's disease (8 female, 2 male; age: 36.7 +/- 4.2 yr), 9 with microadenomas, who were submitted to both GHRP-6 (2 microg/kg iv) and DDAVP (10 micro g i.v.) in bolus administration on 2 separate occasions. ACTH was measured by immunochemiluminometric assay and cortisol by radioimmunoassay. The sensitivities of the assays are 0.2 pmol/l for ACTH, and 11 nmol/l for cortisol. GHRP-6 was able to increase significantly both ACTH (pmol/l, mean +/- SE; basal: 15.5 +/- 1.7 vs peak: 45.1 +/- 9.3) and cortisol values (nmol/l, basal: 583.0 +/- 90.8 vs peak: 1013.4 +/- 194.6). ACTH AUC (pmol/l min(-1)) and cortisol AUC (nmol/l min(-1)) values were 1235.4 and 20577.2, respectively. After DDAVP administration there was a significant increase in ACTH (basal: 13.0 +/- 1.4 vs peak: 50.5 +/- 16.2) and cortisol levels (basal: 572.5 +/- 112.7 vs peak: 860.5 +/- 102.8. AUC values for ACTH and cortisol were 1627.6 +/- 639.8 and 18364.7 +/- 5661.4, respectively. ACTH and cortisol responses to GHRP-6 and DDAVP did not differ significantly (peak: 45.1 +/- 9.3 vs 50.5 +/- 16.2; AUC: 1235.4 +/- 424.8 vs 1627.6 +/- 639.8). There was a significant positive correlation between peak cortisol values after GHRP-6 and DDAVP administration (r = 0.87, p = 0.001). Our results show that GHRP-6 is able to stimulate ACTH and cortisol release in patients with Cushing's disease. These responses are similar to those obtained after DDAVP injection. These findings could suggest the hypothesis that both peptides act by similar mechanisms, either at hypothalamic or pituitary level.

GH responses to GHRH and GHRP-6 in Streptozotocin (STZ)-diabetic rats.

Diz Chaves Y, et al.

Life sciencesPMID: 14572879
View Abstract

GH responses to GHRH, the physiologic hypothalamic stimulus, and GHRP-6, a synthetic hexapeptide that binds the Ghrelin receptor, were studied in rats treated with streptozotocin (STZ), an experimental model of diabetes. Sprague-Dawley male rats received a single injection either of STZ (70 mg/Kg in 0.01 M SSC, i.p.) or of the vehicle (0.01 M SSC). GH responses were challenged with two different doses of GHRH (1 and 10 microg/kg) or GHRP-6 (3 and 30 microg/kg) and with a combination of both at low (1 + 3 microg/kg) or high (10 + 30 microg/kg) doses, respectively. We observed a dose-dependent effect for GH responses to GHRH both in STZ-treated rats and in controls. However, we could not find significant differences between STZ-rats and controls. GH responses to GHRP-6 occurred in a dose-dependent manner in STZ-rats, but not in controls. GH responses to GHRP-6 in both groups were clearly lower than those elicited by GHRH. GH responses to 30 microg/Kg of GHRP-6 were significantly greater in STZ-rats than in controls (AUC: 3549.9 +/- 1001.4 vs. 2046.4 +/- 711.7; p<0.05). The combined administration of GHRH plus GHRP-6 was the most potent stimuli for GH in both groups. The administration of doses in the lower range (1 + 3 microg/Kg, GHRH + GHRP-6 respectively) induced a great peak of GH in STZ-rats and in control rats, revealing a synergistic effect of GHRH and GHRP-6 in both groups. When the higher doses were administered (10 + 30 microg/kg), GH levels in time 5, and AUC were significantly higher in control rats. In addition, a negative correlation between WT (weight tendency) values and GH responses, represented as AUC, could be established in STZ-rats (r2=-0.566, p=0.004 for GHRH; r2=-0.412, p=0.028 for GHRP-6). Thus, the more negative the values of WT were, the more severe the metabolic alteration and, therefore, the higher the GH response to GHRH and GHRHP-6. In conclusion, our results do not support the existence of a functional hypothalamic hypertone of SS in diabetic rats, as GH responses were not usually reduced in STZ-rats, except when both secretagogues were administered together at the higher doses. Besides, GH responses to GHRH and GHRP-6 were inversely correlated with the severity of the metabolic alteration in STZ-rats, meaning that worse glycaemic control promoted higher GH secretion. These results resemble those found in humans, where GH responses to secretagogues are increased in type-1 diabetes and depend on hyperglycaemia, and are representative of not well-controlled insulin-dependent diabetic status.

2000(1 publications)

GH-releasing hormone and GH-releasing peptide-6 for diagnostic testing in GH-deficient adults.

Popovic V, et al.

Lancet (London, England)PMID: 11030292
View Abstract

The diagnosis of growth hormone (GH) deficiency in adults is based on provocative testing of GH secretion. The insulin tolerance test (ITT), currently the favoured test for this diagnosis, has been criticised for poor reproducibility and inconvenience. Since the combined administration of GH-releasing hormone (GHRH) plus GH-releasing peptide-6 (GHRP-6) is the most potent stimulus of GH secretion, we did a multicentre study comparing GH peaks elicited by ITT with those elicited by the GHRH/GHRP-6 test in healthy controls and GH-deficient individuals (cases).

1999(1 publications)

Growth hormone in obesity.

Scacchi M, Pincelli AI, Cavagnini F

International journal of obesity and related metabolic disorders : journal of the International Association for the Study of ObesityPMID: 10193871
View Abstract

Growth hormone (GH) secretion, either spontaneous or evoked by provocative stimuli, is markedly blunted in obesity. In fact obese patients display, compared to normal weight subjects, a reduced half-life, frequency of secretory episodes and daily production rate of the hormone. Furthermore, in these patients GH secretion is impaired in response to all traditional pharmacological stimuli acting at the hypothalamus (insulin-induced hypoglycaemia, arginine, galanin, L-dopa, clonidine, acute glucocorticoid administration) and to direct somatotrope stimulation by exogenous growth hormone releasing hormone (GHRH). Compounds thought to inhibit hypothalamic somatostatin (SRIH) release (pyridostigmine, arginine, galanin, atenolol) consistently improve, though do not normalize, the somatotropin response to GHRH in obesity. The synthetic growth hormone releasing peptides (GHRPs) GHRP-6 and hexarelin elicit in obese patients GH responses greater than those evoked by GHRH, but still lower than those observed in lean subjects. The combined administration of GHRH and GHRP-6 represents the most powerful GH releasing stimulus known in obesity, but once again it is less effective in these patients than in lean subjects. As for the peripheral limb of the GH-insulin-like growth factor I (IGF-I) axis, high free IGF-I, low IGF-binding proteins 1 (IGFBP-1) and 2 (IGFBP-2), normal or high IGFBP-3 and increased GH binding protein (GHBP) circulating levels have been described in obesity. Recent evidence suggests that leptin, the product of adipocyte specific ob gene, exerts a stimulating effect on GH release in rodents; should the same hold true in man, the coexistence of high leptin and low GH serum levels in human obesity would fit in well with the concept of a leptin resistance in this condition. Concerning the influence of metabolic and nutritional factors, an impaired somatotropin response to hypoglycaemia and a failure of glucose load to inhibit spontaneous and stimulated GH release are well documented in obese patients; furthermore, drugs able to block lipolysis and thus to lower serum free fatty acids (NEFA) significantly improve somatotropin secretion in obesity. Caloric restriction and weight loss are followed by the restoration of a normal spontaneous and stimulated GH release. On the whole, hypothalamic, pituitary and peripheral factors appear to be involved in the GH hyposecretion of obesity. A SRIH hypertone, a GHRH deficiency or a functional failure of the somatotrope have been proposed as contributing factors. A lack of the putative endogenous ligand for GHRP receptors is another challenging hypothesis. On the peripheral side, the elevated plasma levels of NEFA and free IGF-I may play a major role. Whatever the cause, the defect of GH secretion in obesity appears to be of secondary, probably adaptive, nature since it is completely reversed by the normalization of body weight. In spite of this, treatment with biosynthetic GH has been shown to improve the body composition and the metabolic efficacy of lean body mass in obese patients undergoing therapeutic severe caloric restriction. GH and conceivably GHRPs might therefore have a place in the therapy of obesity.

1997(1 publications)

Growth hormone responses to GH-releasing peptide (GHRP-6) in hypothyroidism.

Pimentel-Filho FR, et al.

Clinical endocrinologyPMID: 9156038
View Abstract

Both spontaneous and stimulated GH secretion are reduced in patients with hypothyroidism. The mechanisms involved in these alterations are not yet fully understood. GHRP-6 is a synthetic hexapeptide that releases GH both in vivo and in vitro. Its mechanism of action is unknown, but there is evidence that this peptide acts as a functional somatostatin antagonist at pituitary level. The aim of this study was to evaluate the GH response to GHRP-6 in patients with primary hypothyroidism and in normal controls.

1996(1 publications)

Growth hormone response to GHRH, GHRP-6 and GHRH + GHRP-6 in patients with polycystic ovary syndrome.

Micić D, et al.

Clinical endocrinologyPMID: 8959075
View Abstract

Despite improved diagnostic facilities and advanced in vitro studies, the primary causes of the polycystic ovary syndrome (PCOS) have not been resolved. A defect in the regulation of GH secretion has been suggested in PCOS but the available data are limited and the underlying mechanisms remain unknown. In recent years considerable attention has been devoted to non-classic GH secretagogues and, in particular, to the series of hexapeptides of which GH-releasing peptide (His-D-Trp-Ala-Trp-D-Phe-Lys-NH2, known as GHRP-6) is the most representative. GHRP-6 seems to be a promising tool for exploring GH secretory mechanisms and it has been reported that GHRH + GHRP-6 is a powerful stimulus to GH secretion. Our aim was to investigate the GH responses to GHRH, GHRP-6 and the administration of GHRP + GHRP-6 in two groups of patients (normal weight and obese) with PCOS in comparison with matched control groups.

1995(1 publications)

Blocked growth hormone-releasing peptide (GHRP-6)-induced GH secretion and absence of the synergic action of GHRP-6 plus GH-releasing hormone in patients with hypothalamopituitary disconnection: evidence that GHRP-6 main action is exerted at the hypothalamic level.

Popovic V, et al.

The Journal of clinical endocrinology and metabolismPMID: 7883854
View Abstract

GH-releasing peptide (GHRP-6; His-D Trp-Ala-Trp-D Phe-Lys-NH2) is a synthetic compound that releases GH in a specific and dose-related manner through mechanisms and a point of action that are mostly unknown but different from those of GHRH. In man, GHRP-6 is more efficacious than GHRH, and a striking synergistic action on GH release is observed when GHRP-6 and GHRH are administered simultaneously. Based on such a synergistic action, it has been hypothesized that GHRP-6 acts through a double mechanism by actions exerted both at the pituitary and hypothalamic levels. The aim of the present study was 2-fold: 1) to further characterize the mechanism of action and synergistic effects of GHRP-6; and 2) to study its action in patients with hypothalamopituitary disconnection. Twelve patients with different neuroendocrine pathologies leading to a state of hypothalamopituitary disconnection (functional stalk section) and 11 age- and sex-matched normal controls were studied. Each subject underwent 3 tests on separate occasions, being challenged with GHRH (100 micrograms, i.v.), GHRP-6 (90 micrograms, i.v.), or GHRH plus GHRP-6. GH was analyzed as the area under the curve (mean +/- SE, micrograms per L/120 min). In normal subjects GH secretion was 483.7 +/- 99.2 after GHRH, 1434.8 +/- 393.0 after GHRP-6, and 3771.5 +/- 399.6 after GHRH plus GHRP-6; the level of GH secreted after GHRH plus GHRP-6 treatment was significantly (P < 0.05) higher than after the arithmetic sum of GH levels after both compounds administered separately. In the group of patients with hypothalamopituitary disconnection, the level of GH secreted after GHRH was similar to that in controls (423.4 +/- 62.8); however, a complete blockade was observed after GHRP-6 (97.3 +/- 7.9), significantly (P < 0.05) lower than after GHRH as well as lower than the GHRP-6-induced GH release in control subjects (P < 0.01). After GHRH plus GHRP-6, the patients with hypothalamopituitary disconnection showed severely reduced secretion (745.3 +/- 67.6; P < 0.01 vs. controls), a value that was not significantly different from the arithmetic addition of levels produced by both compounds administered separately.(ABSTRACT TRUNCATED AT 400 WORDS)