FGL Research & Studies

Browse 20 scientific publications and peer-reviewed studies related to FGL.

20
Total Citations
12
Years of Research
2025
Most Recent
2004
Earliest

2025(1 publications)

Integrated molecular and clinical characterization of pulmonary large cell neuroendocrine carcinoma.

Nassar AH, et al.

Nature communicationsPMID: 40830141
View Abstract

Pulmonary large cell neuroendocrine carcinoma (LCNEC) is a rare, aggressive lung tumor marked by significant molecular heterogeneity. In a study of 590 patients across two independent cohorts, we observe comparable overall survival across treatment regimens (chemotherapy, chemoimmunotherapy, immunotherapy) without unexpected adverse events. Genomic analysis identifies distinct non-small cell lung cancer-like (NSCLC-like, KEAP1, KRAS, STK11 mutations) and SCLC-like (RB1, TP53 mutations) LCNEC subtypes, with 80% aligning with SCLC transcriptional profiles. Serial sampling reveals stable mutational but shifting transcriptomic landscapes over time. Here we show, elevated FGL-1 (a LAG-3 ligand) and SPINK1 expression in NSCLC-like LCNECs, and higher levels of DLL3 in SCLC-like LCNECs. Immunofluorescence confirms FGL-1 expression in NSCLC-like LCNECs, and H&E slide analyses indicates fewer tumor-infiltrating lymphocytes in LCNECs versus other lung cancers. These findings highlight LCNEC's distinct immunogenomic profile, supporting future investigations into LAG-3, SPINK1, and DLL3-targeted therapies.

2022(3 publications)

2018(2 publications)

Peptides Acting as Cognitive Enhancers.

Asua D, et al.

NeurosciencePMID: 29030286
View Abstract

The aim of this paper is to present an overview of three peptides that, by improving synaptic function, enhance learning and memory in laboratory rodents. We summarize their structure, their mechanisms of action, and their effects on synaptic and cognitive function. First we describe FGL, a peptide derived from the neural cell adhesion molecule which improves cognition by the activation of the PKC pathway that triggers an activity-dependent delivery of AMPA receptors to the synapses. Then we describe PTD4-PI3KAc peptide that by activating PI3K signaling pathway it promotes synapse and spine formation and enhances hippocampal dependent memory. Lastly, we describe a new peptide derived from the well-known tumor suppressor PTEN that prevents pathological interactions between PTEN and PDZ proteins at synapses during exposure to Amyloid beta. This action prevents memory deterioration in mouse model of Alzheimer's disease. Together, this review indicates how learning and memory can be improved by manipulating synaptic function and number through pharmacological treatment with peptides, and it establishes synaptic function as a valid target for cognitive enhancement.

NCAM Mimetic Peptides: Potential Therapeutic Target for Neurological Disorders.

Chu C, et al.

Neurochemical researchPMID: 30003388
View Abstract

The neural cell adhesion molecule (NCAM) plays a pivotal role in the development and maintenance of the nervous system via homophilic (NCAM-NCAM) and heterophilic (NCAM-other molecules) interactions. Many synthetic peptides have been engineered to mimic these interactions and induce NCAM-downstream signaling pathways. Such NCAM mimetics have displayed neuritogenic and neuroprotective properties, as well as synaptic modulation in vitro and in vivo. Furthermore, they have been used successfully in preclinical studies to treat neurological disorders including stroke, traumatic brain injury and Alzheimer's disease. This review focuses on recent progress in the development of NCAM mimetic peptides, in particular, on establishing C3, plannexin, and FGL as therapeutic candidates for neurological disorders.

2016(1 publications)

2014(2 publications)

The synthetic NCAM mimetic peptide FGL mobilizes neural stem cells in vitro and in vivo.

Klein R, et al.

Stem cell reviews and reportsPMID: 24817672
View Abstract

The neural cell adhesion molecule (NCAM) plays a role in neurite outgrowth, synaptogenesis, and neuronal differentiation. The NCAM mimetic peptide FG Loop (FGL) promotes neuronal survival in vitro and enhances spatial learning and memory in rats. We here investigated the effects of FGL on neural stem cells (NSC) in vitro and in vivo. In vitro, cell proliferation of primary NSC was assessed after exposure to various concentrations of NCAM or FGL. The differentiation potential of NCAM- or FGL-treated cells was assessed immunocytochemically. To investigate its influence on endogenous NSC in vivo, FGL was injected subcutaneously into adult rats. The effects on NSC mobilization were studied both via non-invasive positron emission tomography (PET) imaging using the tracer [(18)F]-fluoro-L-thymidine ([(18)F]FLT), as well as with immunohistochemistry. Only FGL significantly enhanced NSC proliferation in vitro, with a maximal effect at 10 μg/ml. During differentiation, NCAM promoted neurogenesis, while FGL induced an oligodendroglial phenotype; astrocytic differentiation was neither affected by NCAM or FGL. Those differential effects of NCAM and FGL on differentiation were mediated through different receptors. After FGL-injection in vivo, proliferative activity of NSC in the subventricular zone (SVZ) was increased (compared to placebo-treated animals). Moreover, non-invasive imaging of cell proliferation using [(18)F]FLT-PET supported an FGL-induced mobilization of NSC from both the SVZ and the hippocampus. We conclude that FGL robustly induces NSC mobilization in vitro and in vivo, and supports oligodendroglial differentiation. This capacity renders FGL a promising agent to facilitate remyelinization, which may eventually make FGL a drug candidate for demyelinating neurological disorders.

Impact of the neural cell adhesion molecule-derived peptide FGL on seizure progression and cellular alterations in the mouse kindling model.

Zellinger C, et al.

ACS chemical neurosciencePMID: 24456603
View Abstract

The neural cell adhesion molecule peptide mimetic fibroblast growth loop (FGL) proved to exert neuroprotective, neurotrophic, and anti-inflammatory effects in different in vitro and in vivo experiments. Based on this beneficial efficacy profile, it is currently in clinical development for neurodegenerative diseases and brain insults. Here, we addressed the hypothesis that the peptide might affect development of seizures in a kindling paradigm, as well as associated behavioral and cellular alterations. Both doses tested, 2 and 10 mg/kg FGL, significantly reduced the number of stimulations necessary to induce a generalized seizure. FGL did not exert relevant effects on the behavioral patterns of kindled animals. As expected, kindling increased the hippocampal cell proliferation rate. Whereas the low dose of FGL did not affect this kindling-associated alteration, 10 mg/kg FGL proved to attenuate the expansion of the doublecortin-positive cell population. These data suggest that FGL administration might have an impact on disease-associated alterations in the hippocampal neuronal progenitor cell population. In conclusion, the effects of the peptide mimetic FGL in the kindling model do not confirm a disease-modifying effect with a beneficial impact on the development or course of epilepsy. The results obtained with FGL rather raise some concern regarding a putative effect, which might promote the formation of a hyperexcitable network. Future studies are required to further assess the risks in models with development of spontaneous seizures.

2012(1 publications)

Age-related changes in the hippocampus (loss of synaptophysin and glial-synaptic interaction) are modified by systemic treatment with an NCAM-derived peptide, FGL.

Ojo B, et al.

Brain, behavior, and immunityPMID: 21986303
View Abstract

Altered synaptic morphology, progressive loss of synapses and glial (astrocyte and microglial) cell activation are considered as characteristic hallmarks of aging. Recent evidence suggests that there is a concomitant age-related decrease in expression of the presynaptic protein, synaptophysin, and the neuronal glycoprotein CD200, which, by interacting with its receptor, plays a role in maintaining microglia in a quiescent state. These age-related changes may be indicative of reduced neuroglial support of synapses. FG Loop (FGL) peptide synthesized from the second fibronectin type III module of neural cell adhesion molecule (NCAM), has previously been shown to attenuate age-related glial cell activation, and to 'restore' cognitive function in aged rats. The mechanisms by which FGL exerts these neuroprotective effects remain unclear, but could involve regulation of CD200, modifying glial-synaptic interactions (affecting neuroglial 'support' at synapses), or impacting directly on synaptic function. Light and electron microscopic (EM) analyses were undertaken to investigate whether systemic treatment with FGL (i) alters CD200, synaptophysin (presynaptic) and PSD-95 (postsynaptic) immunohistochemical expression levels, (ii) affects synaptic number, or (iii) exerts any effects on glial-synaptic interactions within young (4 month-old) and aged (22 month-old) rat hippocampus. Treatment with FGL attenuated the age-related loss of synaptophysin immunoreactivity (-ir) within CA3 and hilus (with no major effect on PSD-95-ir), and of CD200-ir specifically in the CA3 region. Ultrastructural morphometric analyses showed that FGL treatment (i) prevented age-related loss in astrocyte-synaptic contacts, (ii) reduced microglia-synaptic contacts in the CA3 stratum radiatum, but (iii) had no effect on the mean number of synapses in this region. These data suggest that FGL mediates its neuroprotective effects by regulating glial-synaptic interaction.

2010(3 publications)

NCAM-mimetic, FGL peptide, restores disrupted fibroblast growth factor receptor (FGFR) phosphorylation and FGFR mediated signaling in neural cell adhesion molecule (NCAM)-deficient mice.

Aonurm-Helm A, et al.

Brain researchPMID: 19909731
View Abstract

Neural cell adhesion molecule (NCAM) is a membrane-bound glycoprotein expressed on the surface of neuronal and glial cells. Previous in vitro studies have demonstrated that NCAM promotes neuronal functions largely via three main interaction partners: the fibroblast growth factor receptor (FGFR), a member of Src family of tyrosine kinases, Fyn and Raf1 kinase which all activate different intracellular signaling pathways. The objective was to clarify, which signaling pathways are being disrupted in NCAM knockout mice and whether FGL peptide is able to restore observed disruptions. Therefore we compared the levels of phosphorylation of FGFR1, Src kinase Fyn, Raf1 kinase, MAP kinases, Akt kinase and calcium/calmodulin-dependent kinases II and IV (CaMKII and CaMKIV) in the hippocampus of NCAM knockout mice to their wild-type littermates. The data of our study show that mice constitutively deficient in all isoforms of NCAM have decreased basal phosphorylation levels of FGFR1 and CaMKII and CaMKIV. Furthermore, NCAM-mimetic, FGL peptide, is found to be able to restore FGFR1, CaMKII and CaMKIV phosphorylation levels and thereby mimic the interactions of NCAM at this receptor in NCAM deficient mice. Also, we found that Fyn(Tyr530), Raf1, MAP kinases and Akt kinase phosphorylation in adult animals is not affected by NCAM deficiency but interestingly, we found an over-expression of another cell adhesion molecule L1. We conclude that in NCAM deficient mice FGFR1-dependent signaling is disrupted and it can be restored by FGL peptide.

The fibroblast growth factor receptor (FGFR) agonist FGF1 and the neural cell adhesion molecule-derived peptide FGL activate FGFR substrate 2alpha differently.

Chen Y, et al.

Journal of neuroscience researchPMID: 20175207
View Abstract

Activation of fibroblast growth factor (FGF) receptors (FGFRs) both by FGFs and by the neural cell adhesion molecule (NCAM) is crucial in the development and function of the nervous system. We found that FGFR substrate 2alpha (FRS2alpha), Src homologous and collagen A (ShcA), and phospholipase-Cgamma (PLCgamma) were all required for neurite outgrowth from cerebellar granule neurons (CGNs) induced by FGF1 and FGL (an NCAM-derived peptide agonist of FGFR1). Like FGF1, FGL induced tyrosine phosphorylation of FGFR1, FRS2alpha, ShcA, and PLCgamma in a time- and dose-dependent manner. However, the activation of FRS2alpha by FGL was significantly lower than the activation by FGF1, indicating a differential signaling profile induced by NCAM compared with the cognate growth factor.

Biocompatibility and bioactivity of designer self-assembling nanofiber scaffold containing FGL motif for rat dorsal root ganglion neurons.

Zou Z, et al.

Journal of biomedical materials research. Part APMID: 20878982
View Abstract

We report here a designer self-assembling peptide nanofiber scaffold developed specifically for nerve tissue engineering. We synthesized a peptide FGL-RADA containing FGL (EVYVVAENQQGKSKA), the motif of neural cell adhesion molecule (NCAM), and then attended to make a FGL nanofiber scaffold (FGL-NS) by assembling FGL-RADA with the peptide RADA-16 (AcN-RADARADARADARADA-CONH2). The microstructures of the scaffolds were tested using atomic force microscopy (AFM), and rheological properties of materials were accessed. Then we demonstrated the biocompatibility and bioactivity of FGL-NS for rat dorsal root ganglion neurons (DRGn). We found that the designer self-assembling peptide scaffold was noncytotoxic to neurons and able to promote adhesion and neurite sprouting of neurons. Our results indicate that the designer peptide scaffold containing FGL had excellent biocompatibility and bioactivity with adult sensory neurons and could be used for neuronal regeneration.

2009(2 publications)

A synthetic NCAM-derived mimetic peptide, FGL, exerts anti-inflammatory properties via IGF-1 and interferon-gamma modulation.

Downer EJ, et al.

Journal of neurochemistryPMID: 19457161
View Abstract

Microglial cell activity increases in the rat hippocampus during normal brain aging. The neural cell adhesion molecule (NCAM)-derived mimetic peptide, FG loop (FGL), acts as an anti-inflammatory agent in the hippocampus of the aged rat, promoting CD200 ligand expression while attenuating glial cell activation and subsequent pro-inflammatory cytokine production. The aim of the current study was to determine if FGL corrects the age-related imbalance in hippocampal levels of insulin-like growth factor-1 (IGF-1) and pro-inflammatory interferon-gamma (IFNgamma), and subsequently attenuates the glial reactivity associated with aging. Administration of FGL reversed the age-related decline in IGF-1 in hippocampus, while abrogating the age-related increase in IFNgamma. FGL robustly promotes IGF-1 release from primary neurons and IGF-1 is pivotal in FGL induction of neuronal Akt phosphorylation and subsequent CD200 ligand expression in vitro. In addition, FGL abrogates both age- and IFNgamma-induced increases in markers of glial cell activation, including major histocompatibility complex class II (MHCII) and CD40. Finally, the proclivity of FGL to attenuate IFNgamma-induced glial cell activation in vitro is IGF-1-dependent. Overall, these findings suggest that FGL, by correcting the age-related imbalance in hippocampal levels of IGF-1 and IFNgamma, attenuates glial cell activation associated with aging. These findings also highlight a novel mechanism by which FGL can impact on neuronal CD200 ligand expression and subsequently on glial cell activation status.

2008(2 publications)

Chronic stress in adulthood followed by intermittent stress impairs spatial memory and the survival of newborn hippocampal cells in aging animals: prevention by FGL, a peptide mimetic of neural cell adhesion molecule.

Borcel E, et al.

Behavioural pharmacologyPMID: 18195593
View Abstract

In this study, we examined whether chronic stress in adulthood can exert long-term effects on spatial-cognitive abilities and on the survival of newborn hippocampal cells in aging animals. Male Wistar rats were subjected to chronic unpredictable stress at midlife (12 months old) and then reexposed each week to a stress stimulus. When evaluated in the water maze at the early stages of aging (18 months old), chronic unpredictable stress accelerated spatial-cognitive decline, an effect that was accompanied by a reduction in the survival of newborn cells and in the number of adult granular cells in the hippocampus. Interestingly, spatial-memory performance in the Morris water maze was positively correlated with the number of newborn cells that survived in the dentate gyrus: better spatial memory in the water maze was associated with more 5-bromo-2-deoxyuridine (BrdU)-labeled cells. Administration of FGL, a peptide mimetic of neural cell adhesion molecule, during the 4 weeks of continuous stress not only prevented the deleterious effects of chronic stress on spatial memory, but also reduced the survival of the newly generated hippocampal cells in aging animals. FGL treatment did not, however, prevent the decrease in the total number of granular neurons that resulted from prolonged exposure to stress. These findings suggest that the development of new drugs that mimic neural cell adhesion molecule activity might be of therapeutic relevance to treat stress-induced cognitive impairment.

A cell adhesion molecule mimetic, FGL peptide, induces alterations in synapse and dendritic spine structure in the dentate gyrus of aged rats: a three-dimensional ultrastructural study.

Popov VI, et al.

The European journal of neurosciencePMID: 18215229
View Abstract

The FGL peptide is a neural cell adhesion molecule (NCAM) mimetic comprising a 15-amino-acid-long sequence of the FG loop region of the second fibronectin type III module of NCAM. It corresponds to the binding site of NCAM for the fibroblast growth factor receptor 1. FGL improves cognitive function through enhancement of synaptic function. We examined the effect of FGL on synaptic and dendritic structure in the brains of aged (22-month-old) rats that were injected subcutaneously (8 mg/kg) at 2-day intervals until 19 days after the start of the experiment. Animals were perfused with fixative, brains removed and coronal sections cut at 50 microm. The hippocampal volume was measured, tissue embedded and ultrathin sections viewed in a JEOL 1010 electron microscope. Analyses were made of synaptic and dendritic parameters following three-dimensional reconstruction via images from a series of approximately 100 serial ultrathin sections. FGL affected neither hippocampal volume nor spine or synaptic density in the middle molecular layer of the dentate gyrus. However, it increased the ratio of mushroom to thin spines, number of multivesicular bodies and also increased the frequency of appearance of coated pits. Three-dimensional analysis showed a significant decrease in both post-synaptic density and apposition zone curvature of mushroom spines following FGL treatment, whereas for thin spines the convexity of the apposition zone increased. These data indicate that FGL induces large changes in the fine structure of synapses and dendritic spines in hippocampus of aged rats, complementing data showing its effect on cognitive processes.

2006(1 publications)

A neural cell adhesion molecule-derived fibroblast growth factor receptor agonist, the FGL-peptide, promotes early postnatal sensorimotor development and enhances social memory retention.

Secher T, et al.

NeurosciencePMID: 16784819
View Abstract

The neural cell adhesion molecule (NCAM) belongs to the immunoglobulin (Ig) superfamily and is composed extracellularly of five Ig-like and two fibronectin type III (F3) modules. It plays a pivotal role in neuronal development and synaptic plasticity. NCAM signals via a direct interaction with the fibroblast growth factor receptor (FGFR). A 15-amino-acid long peptide, the FG loop (FGL) peptide, that is derived from the second F3 module of NCAM has been found to activate FGFR1. We here report that the FGL peptide, when administered intranasally to newborn rats, accelerated early postnatal development of coordination skills. In adult animals s.c. administration of FGL resulted in a prolonged retention of social memory. We found that FGL rapidly penetrated into the blood and cerebrospinal fluid after both intranasal and s.c. administration and remained detectable in the fluids for up to 5 hours.

2005(1 publications)

A synthetic NCAM-derived peptide, FGL, protects hippocampal neurons from ischemic insult both in vitro and in vivo.

Skibo GG, et al.

The European journal of neurosciencePMID: 16197499
View Abstract

There is a major unmet need for development of innovative strategies for neuroprotection against ischemic brain injury. Here we show that FGL, a neural cell adhesion molecule (NCAM)-derived peptide binding to and inducing phosphorylation of the fibroblast growth factor receptor (FGFR), acts neuroprotectively after an ischemic insult both in vitro and in vivo. The neuroprotective activity of FGL was tested in vitro on dissociated rat hippocampal neurons and hippocampal slice cultures, using a protocol of oxygen-glucose deprivation (OGD). FGL protected hippocampal neurons from damage and maintained or restored their metabolic and presynaptic activity, both if employed as a pretreatment alone to OGD, and if only applied after the insult. In vivo 24 h pretreatment with a single suboccipital injection of FGL significantly protected hippocampal CA1 neurons from death in a transient global ischemia model in the gerbil. We conclude that FGL promotes neuronal survival after ischemic brain injury.

2004(1 publications)

An NCAM-derived FGF-receptor agonist, the FGL-peptide, induces neurite outgrowth and neuronal survival in primary rat neurons.

Neiiendam JL, et al.

Journal of neurochemistryPMID: 15525346
View Abstract

The Neural Cell Adhesion Molecule (NCAM) plays a crucial role in development of the central nervous system regulating cell migration, differentiation and synaptogenesis. NCAM mediates cell-cell adhesion through homophilic NCAM binding, subsequently resulting in activation of the fibroblast growth factor receptor (FGFR). NCAM-mediated adhesion leads to activation of various intracellular signal transduction pathways, including the Ras-mitogen activated protein kinase (MAPK) and the phosphatidylinositol-3-kinase (PI3K)-Akt pathways. A synthetic peptide derived from the second fibronectin type III module of NCAM, the FGL peptide, binds to and induces phosphorylation of FGFR without prior homophilic NCAM binding. We here present evidence that this peptide is able to mimic NCAM heterophilic binding to the FGFR by inducing neuronal differentiation as reflected by neurite outgrowth through a direct interaction with FGFR in primary cultures of three different neuronal cell types all expressing FGFR subtype 1: dopaminergic, hippocampal and cerebellar granule neurons. Moreover, we show that the FGL peptide promotes neuronal survival upon induction of cell death in the same three cell types. The effects of the FGL peptide are shown to depend on activation of FGFR and the MAPK and PI3K intracellular signalling pathways, all three kinases being necessary for the effects of FGL on neurite outgrowth and neuronal survival.